Silicon coupled with plasmon nanocavity generates bright visible hot-luminescence
نویسندگان
چکیده
Due to limitations in device speed and performance of silicon-based electronics, silicon optoelectronics has been extensively studied to achieve ultrafast optical-data processing1-3. However, the biggest challenge has been to develop an efficient silicon-based light source since indirect band-gap of silicon gives rise to extremely low emission efficiency. Although light emission in quantum-confined silicon at sub-10 nm lengthscales has been demonstrated4-7, there are difficulties in integrating quantum structures with conventional electronics8,9. It is desirable to develop new concepts to obtain emission from silicon at lengthscales compatible with current electronic devices (20-100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in "bulk-sized" silicon coupled with plasmon nanocavities from non-thermalized carrier recombination. Highly enhanced emission quantum efficiency (>1%) in plasmonic silicon, along with its size compatibility with present silicon electronics, provides new avenues for developing monolithically integrated light-sources on conventional microchips.
منابع مشابه
Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy
By integrating silicon nanowires (∼150 nm diameter, 20 μm length) with an Ω-shaped plasmonic nanocavity, we are able to generate broadband visible luminescence, which is induced by high order hybrid nanocavity-surface plasmon modes. The nature of this super bandgap emission is explored via photoluminescence spectroscopy studies performed with variable laser excitation energies (1.959 to 2.708 e...
متن کاملTailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.
In this study, we investigated numerically the plasmon response of a planar negative-index metamaterial composed of symmetric molecular orientations of Au ring/disk nanocavities in a heptamer cluster. Using the plasmon hybridization theory and considering the optical response of an individual nanocluster, we determined the accurate geometrical sizes for a ring/disk nanocavity heptamer. It is sh...
متن کاملTime-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders.
Sulfur-doped zinc oxide (ZnO) nanowires grown on gold-coated silicon substrates inside a horizontal tube furnace exhibit remarkably strong visible wavelength emission with a quantum efficiency of 30%, an integrated intensity 1600 times stronger than band edge ultraviolet emission, and a spectral distribution that closely matches the dark-adapted human eye response. By comparatively studying sul...
متن کاملBright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide.
In this work we investigate numerically and experimentally the resonance wavelength tuning of different nanoplasmonic antennas excited through the evanescent field of a single mode silicon nitride waveguide and study their interaction with this excitation field. Experimental interaction efficiencies up to 19% are reported and it is shown that the waveguide geometry can be tuned in order to opti...
متن کاملMulticolor directional surface plasmon-coupled chemiluminescence.
In reports over the past several years, we have demonstrated the efficient collection of optically excited fluorophore emission by its coupling to surface plasmons on thin metallic films, where the coupled luminescence was highly directional and polarized. This phenomenon is referred to as surface plasmon-coupled emission (SPCE). In this current study, we have extended this technique to include...
متن کامل